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Summary

In many g-proteobacteria, the conserved GacS/GacA
(BarA/UvrY) two-component system positively con-
trols the expression of one to five genes specifying
small RNAs (sRNAs) that are characterized by
repeated unpaired GGA motifs but otherwise appear
to belong to several independent families. The GGA
motifs are essential for binding small, dimeric RNA-
binding proteins of a single conserved family desig-
nated RsmA (CsrA). These proteins, which also occur
in bacterial species outside the g-proteobacteria, act
as translational repressors of certain mRNAs when
these contain an RsmA/CsrA binding site at or near
the Shine-Dalgarno sequence plus additional binding
sites located in the 5� untranslated leader mRNA.
Recent structural data have established that the
RsmA-like protein RsmE of Pseudomonas fluore-
scens makes specific contacts with an RNA consen-
sus sequence 5�-A/UCANGGANGU/A-3� (where N is any
nucleotide). Interaction with an RsmA/CsrA protein
promotes the formation of a short stem supporting an
ANGGAN loop. This conformation hinders access
of 30S ribosomal subunits and hence translation
initiation. The output of the Gac/Rsm cascade varies
widely in different bacterial species and typically
involves management of carbon storage and expres-
sion of virulence or biocontrol factors. Unidentified
signal molecules co-ordinate the activity of the Gac/
Rsm cascade in a cell population density-dependent
manner.

Introduction

Bacteria respond to changing environments by adjusting
the cellular levels of mRNAs, stable RNAs (that is, rRNAs
and tRNAs) and small RNAs (sRNAs). Whereas the regu-
lation of transcription initiation is crucial in this adaptation,
subsequent control of translation initiation can be just as
important. Recent studies have shown that two major
classes of sRNAs influence the rate of translation initiation
in bacteria (Majdalani et al., 2005; Storz et al., 2005).
sRNAs of the first class interact with 5′ leader regions of
target mRNAs by base pairing. Such interactions interfere
with ribosome binding when they occur at or near the
Shine-Dalgarno (SD) sequence of mRNAs. The opposite
effect, stimulation of ribosome binding, can also be
observed in situations where sRNAs change the second-
ary structure of target mRNAs by base pairing with an
upstream region. The RNA chaperone Hfq facilitates
these base pairing interactions in Gram-negative bacteria,
but seems to be dispensable in Gram-positive bacteria
(Heidrich et al., 2006; Bohn et al., 2007). sRNAs of the
second class, which have a high affinity for RNA-binding
proteins of the RsmA/CsrA family, can relieve translational
repression owing to these proteins by sequestering them
(Majdalani et al., 2005; Storz et al., 2005; Babitzke and
Romeo, 2007). RsmA and CsrA are acronyms for regula-
tor of secondary metabolism and carbon storage regulator
respectively. In pseudomonads, sRNAs that bind RsmA/
CsrA proteins are typically produced under the positive
control of a two-component system, termed GacS/GacA
(for global activation of antibiotic and cyanide synthesis).
Other g-proteobacteria also have GacS/GacA homo-
logues, many of which bear different names (see Table 1).
The general characteristics of the Gac/Rsm signal trans-
duction pathway are outlined in Fig. 1. The target genes
that are translationally regulated by this regulatory
cascade, and hence the output, vary considerably among
various bacteria (Table 1). However, as we wish to point
out in this review, two features are conserved: in general,
mutants blocked in this regulatory pathway are impaired
in social behaviour and there appears to exist a com-
mon molecular basis of the RNA-RsmA/CsrA protein
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interaction, which ultimately determines the output of the
regulatory pathway. The emphasis of this review will be on
the mechanisms that regulate target gene expression in
the Gac/Rsm cascade, on common features of target
genes and on recent insight gained by structural analysis
of a complex formed between an RsmA/CsrA-type protein
and a target RNA.

Putting the pieces of a jigsaw together

When the components of the Gac/Rsm pathway were first
described in various bacteria, the researchers had widely
different objectives. The sensor kinase GacS (originally
designated LemA) was found in the plant pathogen
Pseudomonas syringae pv. syringae as a key regulator of
pathogenicity (Hrabak and Willis, 1992) and its homo-
logue BarA as a multicopy suppressor of an osmotically

compromised envZ mutant of Escherichia coli (Nagasawa
et al., 1992). The response regulator GacA was discov-
ered as a master regulator of antifungal metabolites in the
biocontrol bacterium Pseudomonas fluorescens CHA0
(Laville et al., 1992). Evidence that GacS and GacA form
a two-component system came from genetic studies in
P. syringae (Rich et al., 1994) and later from in vitro phos-
photransfer experiments with the GacS/GacA homo-
logues BarA/UvrY in E. coli (Pernestig et al. 2001). At the
hierarchical level below GacS/GacA, two genes that
encode GacA-controlled sRNAs were initially found as a
multicopy suppressor (TRR) of a phaseolotoxin-negative,
presumably GacA-defective mutant of P. syringae pv.
phaseolicola (Rowley et al., 1993) and as an activator
of extracellular virulence factor production (aepH) in
Erwinia carotovora ssp. carotovora (Murata et al., 1994).
However, at the time of their discovery, the sRNA products

Fig. 1. General characteristics of the Gac/Rsm signal transduction pathway in g-proteobacteria. The highest number of sRNA genes (five) is
predicted in Photobacterium profundum (Kulkarni et al., 2006). The highest number of genes for small RNA-binding proteins (four) appears to
occur in P. syringae pv. tomato (Rife et al., 2005). ↓, positive effect; ^, negative effect; dotted line, positive feedback loop; X, unknown
hypothetical component.
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of these genes were not recognized simply because
sRNAs were not on the agenda. The findings that the
RNA-binding protein CsrA is a global post-transcriptional
regulator of carbon metabolism (Romeo et al., 1993; Liu
and Romeo, 1997) and that its biological activity is
antagonized by the sRNA CsrB in E. coli (Liu et al., 1997)
eventually opened up a new perspective. The TRR and
aepH loci were found to encode the sRNAs RsmY and
RsmB, respectively; both RsmY and RsmB have high
affinity for RsmA/CsrA-like proteins (Liu et al., 1998;
Valverde et al., 2003). The mechanistic link between
the GacS/GacA two-component system and the post-
transcriptional regulator RsmA/CsrA with its antagonistic
sRNAs was recognized in P. fluorescens (Blumer et al.,
1999; Aarons et al., 2000). Thus, it was possible to
assemble the backbone of the Gac/Rsm signal transduc-
tion pathway (Fig. 1) from pieces of evidence obtained in
bacteria that differ widely with respect to their activities
and habitats. This illustrates well that the Gac/Rsm regu-
latory cascade is conserved in bacterial evolution but
fulfils diversified functions. A detailed picture of this regu-
latory pathway has been obtained mainly in E. carotovora,
E. coli, Pseudomonas aeruginosa, P. fluorescens, Salmo-
nella enterica ssp. Typhimurium, Legionella pneumophila
and Vibrio spp. and is discussed in several recent reviews
(Babitzke and Romeo, 2007; Bejerano-Sagie and Xavier,
2007; Toledo-Arana et al., 2007; Valverde and Haas,
2008).

Gac/Rsm control is mostly positive

Upon activation, the GacS/GacA two-component system
switches on the transcription of sRNA genes termed
csrB, csrC (in enteric bacteria), rsmB (in E. carotovora)
and rsmX, rsmY and rsmZ (in pseudomonads and
related bacteria) (Fig. 1). The expression of the sRNA
genes and, hence, that of many target genes increases
strongly with increasing cell population densities in
E. coli (Suzuki et al., 2002; Dubey et al., 2003; Weil-
bacher et al., 2003), S. enterica (Johnston et al., 1996),
E. carotovora (Eriksson et al., 1998; Cui et al., 2001),
Vibrio cholerae (Lenz et al., 2005), P. fluorescens (Heeb
et al. 2002; Valverde et al., 2003; Kay et al., 2005) and
P. aeruginosa (Heurlier et al., 2004; Burrowes et al.,
2005; Kay et al., 2006). The activated (phosphorylated)
GacA response regulator is suspected to bind to a con-
served upstream element termed the GacA box (consen-
sus TGTAAGN6 CTTACA, where N is any nucleotide) in
the promoters of the sRNA genes mentioned above (Val-
verde et al., 2003; Kay et al., 2005; Lenz et al., 2005;
Kulkarni et al., 2006). This interaction remains to be
demonstrated by in vitro experiments, however. By pro-
ducing the sRNAs, the Gac/Rsm signal transduction
pathway upregulates the production of numerous pro-

teins whose production is repressed by RsmA/CsrA pro-
teins (Fig. 1). Mechanistically, this outcome is now well
understood and will be discussed in detail below. The
alternative, less well-documented scenario is that the
Gac/Rsm cascade downregulates the expression of
certain genes, e.g. those involved in the synthesis of
flagella in P. fluorescens or E. coli (Wei et al., 2001;
Sánchez-Contreras et al., 2002). Here, RsmA/CsrA pro-
teins formally act as activators but how they do this is
not entirely clear. They might negatively regulate some
repressors or they might exert a favourable influence on
mRNA stability (Wei et al., 2001).

gacA mutants lack specific social activities

From the foregoing section it follows that mutants defec-
tive in the GacS/GacA two-component system and its
homologues typically lack a range of functions, whereas
gain of function is less prominent. A non-exhaustive
survey of gacS/gacA mutants and their phenotypes in
various bacteria (Table 1) reveals several interesting
points. (i) All mutants described belong to the
g-proteobacteria. Furthermore, a bioinformatic search for
sRNAs that bind RsmA/CsrA and are controlled by GacA
homologues predicts such sRNAs only in g-proteobacteria
(Kulkarni et al., 2006). This suggests that the Gac/Rsm
pathway may be a specialty of g-proteobacteria, at least in
the form depicted in Fig. 1. (ii) Under laboratory condi-
tions, especially in rich media, gacS/gacA mutants grow
well and may even have a temporary advantage over the
wild type (Eriksson et al., 1998; Bull et al., 2001). (iii) In
animal- and plant-pathogenic bacteria, gacS/gacA
mutants show reduced production of virulence factors and
are less virulent than the wild type in a variety of host-
pathogen systems (Ahmer et al., 1999; Rahme et al.,
2000). In biocontrol bacteria (e.g. P. fluorescens and Ser-
ratia plymuthica), which protect plant roots from patho-
gens (fungi, nematodes), gacS/gacA mutants produce
only low amounts of biocontrol factors (secondary
metabolites, lytic enzymes) and have reduced biocontrol
ability (Table 1). In such biocontrol interactions, the host
plant derives a benefit, while fungi and nematodes expe-
rience biocontrol as an act of virulence. It is therefore not
surprising that many biocontrol factors and virulence
factors have similar properties (Haas et al., 2004). In
g-proteobacteria, the virulence and biocontrol factors con-
trolled by the Gac/Rsm pathway depend strongly on
population sizes and hence can be regarded as manifes-
tations of social behaviour (or quorum sensing). When
bacteria lose these functions, they lose competitiveness
in nature, but remain fit under laboratory conditions.
The signals that modulate the activity of the Gac/Rsm
pathway will be discussed in the section on signalling and
cross-talk.
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In several Pseudomonas species, e.g. P. aeruginosa,
P. syringae and P. chlororaphis, the Gac/Rsm system
exerts positive control on the synthesis of N-acyl-
homoserine lactones, the classical quorum sensing
signals in these organisms. However, many mechanistic
details of this regulation are still unclear (Reimmann et al.,
1997; Chancey et al., 1999; Quinones et al., 2004; Girard
et al., 2006; Kay et al., 2006). In V. cholerae, the VarS/
VarA (= GacS/GacA) – CsrA pathway is a branch of three
quorum sensing pathways, which converge at the central
transcriptional regulator LuxO (Lenz et al., 2005). In
P. fluorescens CHA0, where N-acyl-homoserine lactones
have not been found, it is the Gac/Rsm system that
accounts for cell population density-dependent expres-
sion of exoproducts (Laville et al., 1992; Zuber et al.,
2003; Kay et al., 2005).

rsmA/csrA mutants are also socially handicapped

As gacA mutants are defective in virulence, one might
expect that rsmA/csrA mutations would have the oppo-
site effect and would result in hypervirulence. This is
indeed the case in the soft rot pathogen E. carotovora
(Chatterjee et al., 1995) and, to some extent, in the
human pathogen L. pneumophila, where a csrA mutant
is more highly infectious for macrophages than the wild
type. However, a csrA mutant of L. pneumophila is
impaired in subsequent intracellular growth in macroph-
ages (Table 2) (Molofsky and Swanson, 2003). In other
bacteria, the situation is even more complex (Table 2).
For instance, in S. enterica, both sirA (gacA) and csrA
mutants are unable to invade epithelial cells (Ahmer
et al., 1999; Altier et al., 2000), suggesting that a
balance of positive and negative regulatory effects of
CsrA is important for infection (Fortune et al., 2006). In

P. aeruginosa, GacA negatively and RsmA positively
regulates the type III secretion system (TTSS). As a con-
sequence, an rsmA mutant shows reduced cytotoxicity
for epithelial cells (Mulcahy et al., 2006; Soscia et al.,
2007). A gacA mutant is nevertheless attenuated for
virulence in a number of host organisms because GacA
positively controls a range of virulence factors, espe-
cially those secreted via type II secretion (Rahme et al.,
2000).

For several reasons, the analysis of rsmA/csrA mutants
can be less straightforward than that of gacA mutants. (i)
In several bacterial species, it is difficult to isolate rsmA/
csrA null mutants, as they tend to show strong cell–cell
aggregation and/or slow growth (Romeo et al., 1993;
Lawhon et al., 2003; Molofsky and Swanson, 2003). For
instance, suppressor mutations of unknown nature arise
at high frequencies in a S. enterica csrA mutant (Altier
et al., 2000). In L. pneumophila, the csrA gene could only
be deleted in a strain that carried an additional functional
copy of this gene in trans (Molofsky and Swanson, 2003).
In E. coli, the csrA mutant commonly used carries a
resistance cassette insertion near the 3′ end of the csrA
gene (Romeo and Gong, 1993), which therefore might
conserve residual function. In P. aeruginosa, clumping
restricts growth of an rsmA mutant and results in a small
colony phenotype (Heurlier et al., 2004). (ii) Some bacte-
ria contain two or more rsmA alleles. For instance, in
P. fluorescens CHA0, single mutations in rsmA or its
homologue rsmE have little effect, and an rsmA rsmE
double mutation is required for derepressed production of
biocontrol factors (Reimmann et al., 2005). P. syringae pv.
tomato even contains four functional rsmA homologues
(Rife et al., 2005). (iii) Some bacteria, e.g. P. fluorescens
CHA0, appear to have a safeguard function that puts a
ceiling on the induced expression of Gac/Rsm-controlled

Table 2. Mutants affected in rsmA/csrA in bacteria.

Species
RsmA/CsrA
homologues

Major phenotypic effects of
rsmA/csrA mutation References

Bacillus subtilis csrA Flagella, motility Yakhnin et al. (2007)
Erwinia carotovora ssp. carotovora rsmA Extracellular pectinases, protease,

cellulase, virulence
Chatterjee et al. (1995);

Cui et al. (2001)
Escherichia coli csrA Central carbon metabolism,

Adherence, motility
Romeo et al. (1993);

Wang et al. (2005)
Helicobacter pylori csrA Virulence, motility Barnard et al. (2004)
Legionella pneumophila csrA Cytotoxicity, virulence, motility Molofsky and Swanson (2003)
Proteus mirabilis rsmA Hemolysin, protease, motility Liaw et al. (2003)
Pseudomonas aeruginosa rsmA HCN, pyocyanin, elastase, lipase,

adherence, motility
Pessi et al. (2001);

Heurlier et al. (2004)
Pseudomonas fluorescens rsmA, rsmE DAPG, HCN, protease, adherence Reimmann et al. (2005)
Salmonella enterica ssp. Typhimurium csrA 1,2-propanediol, TTSS, motility Altier et al. (2000);

Lawhon et al. (2003)
Serratia marcescens rsmA Motility Ang et al. (2001)
Vibrio cholerae csrA HapR-dependent factors Lenz et al. (2005)

Abbreviations are the same as in Table 1.
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traits, potentially to avoid intoxication by excessive con-
centrations of extracellular metabolites (Lapouge et al.,
2007). In practice, it is often convenient to assess the
function of the rsmA/csrA genes either by overexpressing
them (which will mimic GacA-deficiency) or by expressing
them from the LacI-controlled tac promoter (Molofsky and
Swanson, 2003; Lapouge et al., 2007).

Genomic studies have revealed rsmA/csrA homolo-
gues outside the g-proteobacteria, e.g. in d-proteobacteria
(Desulfovibrio, Geobacter), e-proteobacteria (Helico-
bacter, Campylobacter), spirochetes (Borrelia, Trepo-
nema), low GC Gram-positive bacteria (Bacillus,
Clostridium) and Thermotoga (Rife et al., 2005; Kulkarni
et al., 2006). Mutants defective in csrA have been reported
in Helicobacter pylori and in Bacillus subtilis where they are
characterized by attenuation of virulence and derepressed
synthesis of flagellar protein, respectively (Barnard et al.,
2004; Yakhnin et al., 2007). An open question is how
the activity of RsmA/CsrA is regulated outside the
g-proteobacteria. Are sRNAs involved and, if so, how are
they regulated?

Several families of GacA-controlled sRNAs

The size of GacA-regulated sRNAs varies between about
100 and 479 nt, the largest known being RsmB of
E. carotovora. They all share multiple unpaired GGA
motifs, which are mostly located in loops or between
stems of stem-loop structures (Babitzke and Romeo,
2007). These motifs are most often embedded in an
ANGGA (55%) or AGGA (45%) context in
pseudomonads, whereas in E. coli AGGA (67%) is more
frequent than ANGGA (33%). According to sequence
comparison, the sRNAs belong to several families typified
by CsrB, CsrC (of enteric bacteria), RsmB (of E. caroto-
vora) and RsmX, RsmY and RsmZ (of pseudomonads
and related bacteria). It is not clear whether these fami-
lies have common ancestors. Until this question is
settled, we prefer to consider them as functional homo-
logues rather than as homologues. The sRNAs feedback
inhibit the transcription of their own genes by interfering
with the function of the GacS/GacA system (Fig. 1), e.g.
in E. coli (Suzuki et al., 2002), P. aeruginosa (Heurlier
et al., 2004; Kay et al., 2006) and P. fluorescens (Heeb
et al. 2002; Valverde et al., 2003; Kay et al., 2005). The
simplest assumption – the sRNAs allosterically inhibit
GacA phosphorylation or GacA binding to the putative
GacA box – lacks experimental support. From mutant
studies it appears that the RsmA/CsrA proteins act as
positive control elements on the sRNA promoters in the
bacteria mentioned. The mechanism involved is obscure.
Possibly, the RsmA/CsrA proteins might translationally
repress unknown transcriptional repressors of the sRNA
genes. In E. carotovora, where such a feedback regula-

tion does not operate (Chatterjee et al., 2002), negative
control of rsmB expression is exerted by three transcrip-
tional repressors, RsmC, KdgR and HexA (Mukherjee
et al., 2000).

Knocking out all GacA-controlled sRNA genes in a
bacterium results in phenotypes that are similar to those
of a gacA mutant. This has been observed for rsmB and
gacA mutants in E. carotovora (Cui et al., 2001), csrB
csrC and uvrY mutants in E. coli (Weilbacher et al.,
2003), csrB csrC and sirA mutants in S. enterica
(Fortune et al., 2006), rsmY rsmZ and gacA mutants in
P. aeruginosa (Kay et al., 2006) and rsmX rsmY rsmZ
and gacA mutants in P. fluorescens (Kay et al., 2005).
These observations suggest that the GacS/GacA system
and its homologues mainly drive the expression of sRNA
genes. However, the possibility that the GacS/GacA
system directly regulates other types of genes cannot be
excluded.

Signalling and cross-talk

Pseudomonads and Vibrios growing to high population
densities excrete signal molecules that activate the GacS/
GacA system; both intraspecies and interspecies signal-
ling have been observed (Dubuis and Haas, 2007; Dubuis
et al., 2007). The signals appear to be unrelated to well-
known quorum sensing signals such N-acyl-homoserine
lactones or autoinducer 2, and their chemical structures
remain to be elucidated. The signals might interact
with the GacS sensor. Circumstantial evidence for this
hypothesis comes from a signal-blind gacS mutant of
P. fluorescens in which the Gac/Rsm pathway is constitu-
tively switched on (Zuber et al., 2003). Very little signal
activity is present in culture supernatants of P. fluorescens
and P. aeruginosa gacA mutants (Kay et al., 2005; Dubuis
and Haas, 2007). This suggests that the signals act as
autoinducers of the Gac/Rsm system, via a positive feed-
back loop (Fig. 1). Currently, no mutants are available that
are affected specifically in structural genes for signal
biosynthesis.

Depending on the bacterial species, the activity of the
GacS/GacA system can be modulated by accessory
regulators. In P. aeruginosa, two sensor kinases, RetS
and LadS, have a negative and a positive influence,
respectively, on GacA-dependent expression of rsmZ
(Goodman et al., 2004; Laskowski and Kazmierczak,
2006; Ventre et al., 2006). The simplest interpretation is
that RetS might prevent phosphorylation of GacA,
whereas LadS might favour phosphorylation. Whether
RetS and LadS respond to specific signals remains to be
seen. Additionally, in P. aeruginosa, the sigma factor
RpoN affects GacA expression negatively (Heurlier et al.,
2003). In E. coli, YhdA, a protein predicted to be inserted
in the cytoplasmic membrane, modulates UvrY (GacA)-
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mediated expression of csrB and csrC (Jonas et al.,
2006).

Recognition of sRNAs and mRNAs by proteins of the
RsmA/CsrA family

In striking contrast to the existence of several families of
GacA-dependent sRNAs, there appears to be one con-
served family of RsmA/CsrA proteins that bind these
sRNAs. The small RsmA/CsrA proteins have a monomer
size of about 7 kDa; in solution, they are present as
dimers (Dubey et al., 2003). The structures of E. coli CsrA
and of RsmA from P. aeruginosa and Yersinia entero-
colitica show that each monomer contains five b-strands
and a C-terminal a-helix (Gutiérrez et al., 2005; Rife et al.,
2005; Heeb et al., 2006). Alanine-scanning substitution
analysis of E. coli CsrA revealed two regions, i.e. strands
b1 and b5, which are important for RNA binding in vivo
(Mercante et al., 2006). Two approaches have been
useful to define the interactions of RsmA/CsrA proteins
with sRNAs. First, RNA ligands with high affinity for E. coli
CsrA were enriched in vitro by SELEX (systematic evolu-
tion of ligands by exponential enrichment). The RNAs
obtained have a fully conserved ACANGGANGU consen-
sus sequence in which the central GGA motif is part of a
loop placed on variable short stems. Substitution muta-
tions of conserved nucleotides greatly diminish affinity for
CsrA (Dubey et al., 2005). Second, extensive mutational
analysis of the RsmY sRNA (Valverde et al., 2004) and of
the untranslated 5′ leader of hcnA mRNA (Lapouge et al.,
2007) revealed critical contacts between these RNAs
and the RsmA protein and its homologue RsmE in
P. fluorescens. The hcnA gene is the first of the hcnABC
operon that encodes hydrogen cyanide (HCN) synthase.
The hcnABC operon is positively regulated by GacA and
is involved in the biosynthesis of the biocontrol factor HCN
(Blumer et al., 1999). RsmY, which is predicted to have six
unpaired GGA motifs, forms four discrete complexes with
RsmA in gel mobility assays. An RsmY mutant in which
five of the GGA motifs have been altered by mutation
retains the ability to form one complex in vitro, but is
inactive as a regulator in vivo (Valverde et al., 2004). The
hcnA 5′ leader has five GGA motifs, all of which contribute
to regulation by GacA, RsmA and RsmE in vivo; more-
over, they allow RsmE to form at least three distinct com-
plexes with the hcnA 5′ leader RNA in vitro (Lapouge
et al., 2007). The most distal GGA motif overlaps the SD
sequence and occurs in a sequence (UCACGGAUGA)
that matches the SELEX-derived consensus (underlined)
except for the flanking nucleotides, which are inverted but
still contribute to the ability of the sequence to form a short
stem. Point mutations in the conserved nucleotides
strongly diminish the regulation of hcnA expression by
GacA, RsmA and RsmE; point mutations in the variable

nucleotides have less marked effects (Lapouge et al.,
2007). Taken together, these observations can be inter-
preted as showing that RsmA/CsrA proteins bind to SD
regions that resemble the SELEX-derived consensus;
strong binding is favoured by additional upstream GGA
motifs in the mRNA 5′ leader. Together, these interactions
hinder ribosome access and translation initiation. GacA-
controlled sRNAs prevent the translational roadblock by
virtue of their multiple GGA motifs (Fig. 2).

Structure of an RNA–RsmE complex

The solution structure of RsmE in complex with a
12-nucleotide fragment of the hcnA 5′ leader mRNA
of P. fluorescens was determined recently by NMR
spectroscopy. The RNA fragment used contains the most
distal GGA motif, which is part of the SD sequence and
participates in RsmE binding in vitro (Schubert et al.,
2007). The structure shows that the RsmE dimer binds
two RNA molecules (Fig. 3A). The mode of binding is
unusual as the main RNA binding surfaces of RsmE are
not the planes of two b-sheets, as would be common in
other RNA recognition motifs (Maris et al., 2005), but
rather RsmE makes contacts with the target RNA at the
edges of two b-sheets, i.e. at the edge of the b1 strand in
one monomer and at the edge of the b5 strand in the other

Fig. 2. Model for regulation of translation initiation, partly based
on recent work on hcnA mRNA expression in P. fluorescens
(Lapouge et al., 2007; Schubert et al., 2007). The hcnA 5′ leader
mRNA adopts either of two conformations. Translation initiation is
favoured when the SD sequence (bold face) is free to base pair
with the 3′ end of 16S rRNA in the 30S ribosomal subunit. Binding
of the RsmA or RsmE protein to an extended GGA motif (bold face)
in the ribosome binding site as well as to GGA motifs further
upstream (not shown) results in a conformational change that
hinders the access of ribosomes and hence translation initiation.
The AUG translation start codon is also indicated in bold face.
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monomer (Fig. 3A). When bound to the positively charged
RsmE interface, the 5′-UUCACGGAUGAA-3′ hcnA
sequence adopts a stem-loop conformation with the
5′-UUC and GAA-3′ termini forming three base pairs
(Fig. 3B). Of these, the U2–A11 and C3–G10 pairs are
recognized by protein side-chains from both RsmE sub-
units (Fig. 3A). Among the six central nucleotides, the two
adenines (A4 and A8) and the two guanines (G6 and G7)
are coplanar and specifically interact with the b-strands b1
and b5, whereas the cytosine (C5) and the uracil (U9) are
spread out and interact non-sequence specifically with the
C-terminal a-helix and the b-sheets b3/b4, respectively
(Fig. 3A). Quite strikingly, the sequence-specific recogni-
tion is almost solely mediated by the protein main-chains
of b1 (for A4 and A8) and b5 (for G6 and G7), indicating
that it is the fold of the protein rather than its side-chain
arrangement that mediates the sequence-specific recog-
nition of the RNA (Schubert et al., 2007). Details of the
RsmE–RNA structure are given in Fig. S1. The structure
rationalizes well the RNA consensus sequence found by
SELEX (ACANGGANGU) and by footprinting experi-
ments for the RsmA/CsrA family of proteins. Moreover, the
structure explains how binding of RsmE (or RsmA) to the
hcnA mRNA sequesters the ribosome binding site, as
almost all the nucleotides of the SD sequence are in
contact with the protein and therefore unavailable for base
pairing with 16S rRNA.

RsmA/CsrA effects on mRNA stability and a caveat

An arrest of translation initiation usually results in
enhanced mRNA decay in E. coli (Kaberdin and Bläsi,

2006). Thus, mRNAs may become more susceptible to
degradation when they are repressed by RsmA/CsrA pro-
teins, and more stable in the absence of RsmA/CsrA.
Such effects have been observed in an E. coli csrA
mutant, in which the half-lives of the glgC and pgaA target
mRNAs are significantly longer than those in the wild type
(Liu et al., 1995; Wang et al., 2005). Further work is
needed in bacteria other than E. coli before a generaliza-
tion of these findings can be offered. In this context, we
note that several researchers have used transcriptional
reporter fusions to monitor regulation of target gene
expression by the Gac/Rsm cascade. Sometimes this
approach works, sometimes it does not. A transcriptional
reporter that is fused to a distal part of a target gene may
fortuitously pick up any mRNA instability caused by
arrested translation in the upstream target gene fragment.
Therefore, reporter expression might be lowered by a
gacA mutation, giving the erroneous impression that
GacA control of target mRNA expression is trans-
criptional. However, if a transcriptional reporter is joined
directly to the promoter of a target gene (as it should be),
such a construct will not monitor direct regulation of the
target mRNA by the Gac/Rsm cascade. Instead, it is
advisable to use translational (lacZ or gfp) reporter
fusions for testing regulatory effects of the Gac/Rsm
cascade.

Regulation versus modulation

We have pointed out the important roles of the Gac/Rsm
cascade in the regulation of virulence factors and cellular
adherence properties. How do these considerations apply

Fig. 3. NMR solution structure of an RsmE–hcnA RNA complex.
A. A representative structure shows the 2:2 complex between the RsmE protein and a 12-nucleotide hcnA mRNA fragment that contains the
most distal of five GGA motifs and encompasses the SD sequence. Protein ribbons for each monomer are shown in green and violet. Heavy
atoms of the two RNAs are shown in yellow (carbon), blue (nitrogen) and red (oxygen and phosphorus). The linking phosphates in the
backbone are designated by an orange ribbon.
B. A surface representation of the RsmE dimer is shown in complex with one 12-nucleotide hcnA RNA molecule; the second RNA in the
background is omitted for clarity. The protein is colour-coded for the electrostatic potential (blue, positive; red, negative); a representative
structure is shown.
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to a non-pathogenic bacterium such as E. coli K12? In this
strain, the most profound influence of the UvrY/CsrA
system has been observed on the biosynthesis of the
storage compound glycogen (Romeo et al., 1993; Baker
et al., 2002). An intermediate influence is reported for the
biosynthesis of poly b-1,6-N-acetyl-D-glucosamine, an
extracellular polysaccharide and adhesin (Wang et al.,
2005) and a weak influence for the CstA peptide trans-
porter (Dubey et al., 2003) and the Hfq protein (Baker
et al., 2007). In P. fluorescens CHA0, the effects of the
GacA/RsmA+RsmE system on exoproduct formation are
more pronounced, with typical GacA induction factors of
� 50 for the hcnA and aprA (alkaline protease) genes
(Blumer et al., 1999; Kay et al., 2005). We have the
impression that the UvrY/CsrA system of E. coli mainly
serves to modulate gene expression, whereas the GacA/
RsmA+RsmE system of P. fluorescens fulfils a more deci-
sive regulatory function. The amplitude of regulation in
both bacterial species correlates positively with the
number and the sequence conservation of RsmA/CsrA
binding sites on target mRNAs, as determined by footprint
and toeprint analyses (Baker et al., 2002; 2007; Dubey
et al., 2003; Wang et al., 2005; Lapouge et al., 2007). In
P. fluorescens, the fact that one of the two RNA-binding
proteins (RsmE) is itself regulated by the Gac/Rsm
system also contributes to a highly effective regulation
(Reimmann et al., 2005).

Outlook

While several important features of the Gac/Rsm cascade
are now understood in molecular detail, further questions
remain to be solved. For instance: How have the sRNAs
evolved and to how many phylogenetically distinct fami-
lies do they belong? How do the sRNAs control the pro-
moters of their structural genes? What is the significance
of the sRNA redundancy, and does this redundancy allow
fine-tuning in response to environmental or metabolic
stimuli? What determines the stability of mRNAs and
sRNAs, in addition to the recently discovered CsrD decay
factor of E. coli, which targets CsrB and CsrC for degra-
dation (Suzuki et al., 2006)? What is the optimal spacing
between RsmA/CsrA binding sites, allowing tight binding
of these dimeric proteins, and what are the stoichio-
metries of typical complexes? What is the role of the
Gac/Rsm system in carbon metabolism of bacteria other
than E. coli? Last but not least, what are the chemical
structures of the activating signals and with which sensors
(GacS, LadS, RetS, etc.) do they interact?
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