IBC EDITORS' PICK

()

Check for
updates

Hydrogen/deuterium exchange memory NMR reveals
structural epitopes involved in IgE cross-reactivity of
allergenic lipid transfer proteins
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Identification of antibody-binding epitopes is crucial to
understand immunological mechanisms. It is of particular in-
terest for allergenic proteins with high cross-reactivity as
observed in the lipid transfer protein (LTP) syndrome, which is
characterized by severe allergic reactions. Art v 3, a pollen LTP
from mugwort, is frequently involved in this cross-reactivity, but
no antibody-binding epitopes have been determined so far. To
reveal human IgE-binding regions of Art v 3, we produced three
murine high-affinity mAbs, which showed 70-90% coverage of
the allergenic epitopes from mugwort pollen—allergic patients. As
reliable methods to determine structural epitopes with tightly
interacting intact antibodies under native conditions are lacking,
we developed a straightforward NMR approach termed hydro-
gen/deuterium exchange memory (HDXMEM). It relies on the
slow exchange between the invisible antigen-mAb complex and
the free '°N-labeled antigen whose 'H-'°N correlations are
detected. Due to a memory effect, changes of NH protection dur-
ing antibody binding are measured. Differences in H/D exchange
rates and analyses of mADb reactivity to homologous LTPs revealed
three structural epitopes: two partially cross-reactive regions
around a-helices 2 and 4 as well as a novel Art v 3—specific epitope
at the C terminus. Protein variants with exchanged epitope resi-
dues confirmed the antibody-binding sites and revealed strongly
reduced IgE reactivity. Using the novel HDXMEM for NMR epi-
tope mapping allowed identification of the first structural epi-
topes of an allergenic pollen LTP. This knowledge enables
improved cross-reactivity prediction for patients suffering from
LTP allergy and facilitates design of therapeutics.

Interaction of antibodies with their antigen-binding sites
(epitopes) is vital to maintain health but may also contribute to
immunological diseases. To understand these interactions,
determination of binding specificities and precise epitope local-
ization is a crucial but not trivial task (1). A reliable technique
to investigate binding of an antigen with its respective antibody
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is X-ray crystallography. This, however, typically requires pro-
duction and extensive testing of truncated antibody fragments
that need to generate high-quality (co-)crystals (2, 3). More
recently, MS-based approaches have used hydrogen/deuterium
exchange to reveal binding regions (4, 5). Differences in
exchange rates can be measured at the peptide mass level, but
resolution is typically poor, because it mostly depends on the
accessibility of proteolytic cleavage sites. Another option i.e.
screening of immobilized synthetic peptides covering the entire
antigen sequence is straightforward but limited to analysis of
continuous, linear epitopes (6, 7).

A powerful technique for mapping protein interactions is
NMR spectroscopy using chemical shift deviations (8). How-
ever, the large molecular size of the mAb-antigen complexes
prevents a straightforward application. Analogous to X-ray
crystallography, so far Fab fragments of the mAbs obtained
by enzymatic cleavage are a typical prerequisite for analyses
(9). However, Fab fragments often show low stability, and
although the size of the Fab-antigen complex is still large and
challenging for NMR measurements, it was successful in sev-
eral cases. Typically, additional deuteration of the protein and
special NMR techniques like TROSY experiments are required
(10). Whereas this methodology seems successful for NMR epi-
tope mapping (11-16), it relies on the availability of isolated
Fab fragments and works best with interactions under a fast-
exchange regime. Whereas weak interactions typically with a
fast-exchange regime can be well-analyzed, tight interactions
with low kg rates are challenging. Moderately tight interac-
tions involving large proteins can be studied by cross-satura-
tion experiments like chemical exchange saturation transfer or
dark-state exchange saturation transfer as long as there is suffi-
cient exchange during the NMR experiment, ideally with
exchange time scales between 10 ms and 1 s (17, 18). However,
these methods rely on exchange between the free and the
bound form, and they fail if the k¢ rates are much slower than
a scan of the NMR experiment. For interactions with antibod-
ies, deuteration of the '°N-labeled binding partner largely
improves the performance (16). Another strategy for tight
interactions involves weakening of affinity e.g. by the use of
detergents (15). However, such additions might influence the
results, as the fold and stability of the antibody and antigen can
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Figure 1. Characterization and IgE inhibition capacities of Art v 3-specific mAbs. A, binding of mAbs |, II, and Il to native Art v 3 (N) or reduced and alky-
lated Art v 3 (RA) was determined by ELISA. Measurements were performed in triplicates; means and S.E. (error bars) are given. B, IgE binding of allergic patients
(P1-P21) to immobilized Art v 3 inhibited by the respective monoclonal antibodies was determined by ELISA. An unrelated anti-Amb a 1 antibody was used as
control Ab (cAb). Black lines, medians. ****, p < 0.0001; ***, p < 0.001; *, p < 0.05.

be affected. NMR-detected H/D exchange has also been used
for interaction mapping with antibodies, either based on
directly observable fragments (19, 20) or on a tedious protocol
involving quenching the H/D exchange, separating the antigen
from the mAb and detecting the amount of NH in spectra of
the separated antigen for each time point (20, 21). Considering
all mentioned applications, we currently lack a straightforward,
high-resolution method for determination of structural epi-
topes of antigens interacting very tightly with intact antibodies
under native conditions.

Identification of antibody-binding epitopes is required to
efficiently study IgE cross-reactivity, design novel vaccines, and
monitor allergen immunotherapies (22). At present, more than
100 tertiary structures of allergens have been solved, but infor-
mation on their antibody-binding epitopes is very limited (23).
This also applies to nonspecific lipid transfer proteins (LTPs)
that were identified as allergens in food, pollen, and latex (6,
24). LTPs are small, nonglycosylated proteins with a typical
a-helical fold stabilized by disulfide bonds (25). Due to their
high thermal and proteolytic stability, they are able to trigger
severe allergic reactions. Clinical manifestations ranging from
mild oral symptoms to anaphylaxis are described as LTP syn-
drome (26-29). The complex clinical picture is based on IgE
cross-reactivity, which can cause allergic reactions to multiple
LTP-containing sources because of high structural similarities
of the underlying allergens (30—34). However, besides cross-re-
active LTP epitopes, additional source-specific IgE epitopes do
exist (35, 36), which contributes to the complexity of this syn-
drome. The only pollen LTP with IgE cross-reactivity relevant
to this syndrome is Art v 3 from mugwort pollen. Our recent
study revealed that patients’ IgE and murine IgG recognize
exclusively conformational antibody-binding epitopes (25),
suggesting a folded protein during allergic sensitization (37,
38). So far, no information on the localization of antibody-bind-
ing sites accounting for the IgE (cross)-reactive epitopes of Art
v 3 is available.

Thus, Art v 3 serves as an excellent representative to study
structural epitopes using high-affinity antibodies. For this
purpose, we developed a novel NMR-based approach termed
hydrogen/deuterium-exchange memory (HDXMEM). This
method utilizes the equilibrium of free and mAb-bound pro-
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tein, which results in reduced H/D exchange rates of anti-
body-bound regions due to a memory effect. To reveal
antigen-antibody interaction at the residue level, murine
monoclonal antibodies that covered relevant human IgE-
binding epitopes of Art v 3 were used for mapping. Together
with reduced antibody reactivity to Art v 3 epitope variants,
distinct residues relevant for IgE binding and LTP cross-
reactivity were determined.

Results
Art v 3-specific murine mAbs recognize structural epitopes

To generate mAbs, mice were immunized with recombinant
Art v 3.0201 (for simplicity termed Art v 3). We produced the
nontagged allergen using Escherichia coli Rosetta-gami cells
enabling disulfide bond formation relevant for the LTP fold
(25). The protein showed the correct identity and high purity
(>98%) as verified by gel electrophoresis and MS (Fig. S1, A
and B). Recombinant Art v 3 was subcutaneously administered
six times, and murine spleens were harvested after 56 days (Fig.
S1C). After generating hybridoma cells, single B cells were
obtained by limiting dilution. Three clones with high affinity to
Art v 3 were selected, and mAbs were purified using protein G
columns (Fig. S1D). We finally obtained 10—12 mg of each Art
v 3—specific IgG1 antibody (i.e. mAb I, mAb II, and mAb III).
All mAbs efficiently bound the native protein in ELISA,
whereas no reactivity was observed when Art v 3 was reduced
and alkylated (Fig. 1A4). This suggests that the obtained mAbs
recognize structural epitopes on the disulfide bond-stabilized
structure.

Affinity and driving forces of allergen recognition by
individual mAbs

To characterize the binding affinity between Art v 3 and the
mAbs, we used isothermal titration calorimetry (ITC) and sur-
face acoustic wave (SAW) measurements. Highly comparable
binding affinities ranging from 5.5 to 75.6 nM were observed
with both techniques (Fig. 2). Recognition by mAb I generated
a large enthalpy gain, but the binding had to overcome an
entropic barrier (positive — TAS). Interaction with mAb II again
generated a smaller enthalpy gain than entropy gain, resulting
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Figure 2. Isothermal titration calorimetry and surface acoustic wave data of the interaction between Art v 3 and mAb I, mAb Il and mAb IIl. A, raw
data and integrated heats as a function of the molar ratio with the best fit. B, illustration of the thermodynamic components AG, AH, and —TAS for each of the
interactions. C, representative binding curves between the respective mAb and Art v 3 monitored by surface acoustic wave technology. Average Kj values

and S.D. of 12 channels are given.

in a very similar AG and thus K compared with mAb I. Inter-
action with mAb III showed a slightly lower affinity and was
mainly entropy-driven. These results suggest that despite
similar affinities, the antibody-binding mechanisms on the
molecular level must be quite different. Interestingly, the
SAW data revealed extremely slow binding kinetics (Fig.
S2A). Dissociation rate constants (k.¢) extracted from fit-
ting the decay phases were in the range of 107> to 10 *s™ !

17400 J Biol. Chem. (2020) 295(51) 17398-17410

for the three mAbs, corresponding to half-lives on the order
of several hours (Fig. S2B).

Binding of mAb overlaps with human IgE epitopes from
mugwort pollen-allergic patients

To determine whether purified murine mAbs cover relevant
human IgE-binding epitopes, we performed ELISAs using sera
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of 21 mugwort pollen—allergic patients. All sera were positive
to Art v 3, whereas IgE binding to homologous LTPs revealed
diverse and patient-specific sensitization patterns (Table S1).
In ELISA, preincubation with mAb I reduced on average 90%
(range 29-98%) of IgE binding. Both, mAb I and mAb III led to
a decrease in IgE reactivity of around 70%. The specificity of the
assay was verified using an unrelated mAb as control (Fig. 1B).
Based on these data, our mAbs qualify as surrogate antibodies
for mapping structural IgE-binding regions of Art v 3.

Confirming the structural integrity of Art v 3 in solution by
sequence-specific NMIR assignment

To verify whether Art v 3 adopts the typical LTP fold in solu-
tion and to subsequently map epitopes on the amino acid level,
we used NMR spectroscopy to sequence-specifically assign the
backbone chemical shifts. This was achieved using recombi-
nant 3C'°N-labeled Art v 3 (Fig. S1, A and B) and standard tri-
ple-resonance experiments HNCA, HNCACB, CBCA(CO)NH,
HNCO, and HN(CA)CO (39) at 278 and 298 K. An extensive
buffer exchange to phosphate buffer, pH 6.0, was required to
obtain a homogeneous protein preparation, as judged from the
>N HSQC spectrum (Fig. $3) providing a protein fingerprint,
in which every amino acid is represented by one signal. The
chemical shift assignment determined at 298 K was used to pre-
dict the secondary structure of Art v 3 in solution (Fig. S4).
Localization of a-helices is in agreement with regions deter-
mined in the crystal structure (PDB entry 6FRR), thus confirm-
ing the correct folding of this Art v 3 preparation in solution.

Evaluating traditional NMR approaches for mapping the
binding sites

To evaluate whether traditional NMR titration studies are
feasible to map binding epitopes, as suggested by Razzera et al.
(40), a series of "> N HSQC spectra was used to monitor the
binding of the individual mAbs to the '’N-labeled allergen.
This resulted in a gradual disappearance of Art v 3 signals, in-
dicative of a slow exchange regime and a formed complex that
was beyond the size limit of NMR spectroscopy, resulting in the
disappearance of all NMR signals. Neither changes in peak
positions nor changes in line widths were observed (Fig. S5),
which could have been used for epitope mapping. Instead, the
signal intensity of all NH signals decreased uniformly for all res-
idues with increasing mAb concentration. In summary, interac-
tions of Art v 3 with mAbs could not be mapped by traditional
two-dimensional NMR titrations because no chemical shift
perturbations or line broadening effects were observed.

HDXMEM identified three structural epitopes on distinct
surface regions of Art v 3

To map the functional epitopes of Art v 3 with the three
intact mAbs in situ despite the tight binding and extremely
slow kg rates, we developed an innovative approach based on
H/D exchange. This overcomes the limitations of conventional
H/D exchange measurements because such tight interactions
between antigens and intact mAbs that are not directly detecta-
ble by NMR spectroscopy due to their large size, or rely on a te-
dious protocol of quenching the exchange and separating the
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antigen from the mAb for each time point (21). Our novel
approach, the HDXMEM, uses the memory of the H/D
exchange in the bound, invisible form and the exchange
between free and bound allergen. We therefore measured H/D
exchange times of the free allergen in the absence and presence
of 0.25 eq of mAb in which ~50% of Art v 3 was free and ~50%
was bound to mAb (Fig. 3). This method exploits the exchange
of the small protein binding partner between the free and
bound state, so that some information of the bound state can
be picked up by the signals of the free allergen. A comparison
between measurements with and without mAb enables deter-
mination of differences originating from altered H/D exchange
rates in the bound form. The H/D exchange can be measured
in situ over a time range of minutes up to months, which makes
it likely that a memory of the bound state can be detected.

In our experimental setup, H/D exchange of unbound **N-la-
beled Art v 3 was monitored at 278 K using "H-">N HSQC spec-
tra over a period of 5-9 days (Fig. 4). Most exchange curves could
be fit well (Fig. S6), and precise exchange rates/times could be
extracted, ranging from 1 X 10* to >2 X 10° s (Fig. S7), corre-
sponding to 16 min to 12 weeks. However, for the very slowly
exchanging amides, whose intensity did not decrease signifi-
cantly, curve fitting delivered only inaccurate exchange times. For
these signals, H/D exchange was additionally measured at 298 K,
speeding up exchange times to 4 days maximum, resulting in
exchange curves that could be fit well (Fig. S8). Analog measure-
ments in the presence of the three different mAbs, using samples
containing ~50% free and 50% bound Art v 3 revealed corre-
sponding exchange times (Fig. S9-S14). H/D exchange times
could be extracted for 36% of all amino acids at 278 K for the free
protein and for 33-36% for the samples containing mAbs.

To map the binding epitope, the H/D exchange times of the
allergen were compared between the measurements with and
without mAb (Figs. 2 and 3). An increase in H/D exchange
times indicates a local protection by the mAb. Indeed, several
residues displayed (up to 4-fold) increased H/D exchange times
(Fig. 5). Each mAb showed a distinct profile in exchange time
changes and affected different residues. In the case of mAb I,
changes clustered on a surface-exposed region in the vicinity of
Gly-34 and Ala-39. For mAb II, the largest changes were
detected for residues Arg-45, Gln-46, Tyr-80, and Lys-92.
Regarding mAb III, a cluster of the largest changes was
observed around Cys-28 (not surface-exposed), Gly-31, Lys-73,
Cys-74, and Val-76 (Fig. 4). The differences in localization of
antibody-binding residues are better comprehensible by map-
ping them on a surface presentation of the Art v 3 structure and
taking the surface accessibility of each residue into account
(Fig. 4). In summary, each mAb recognized a distinct surface
epitope demonstrating the power of the presented HDXMEM
approach.

Antibody binding revealed a distinct recognition pattern
toward homologous LTPs

To reveal reactivity profiles, antibody-binding titers of the
three mAbs to another Art v 3 isoform and six other LTPs were
determined. Homologous LTPs represent relevant allergens from
pollen and food with sequence identities to Art v 3 ranging from
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Figure 3. Schematic presentation of the HDXMEM NMR methodology. The *N-labeled allergen is dissolved in H,0 and contains nearly 100% amide pro-
tons schematically indicated by red dots. After lyophilization and dissolving in D,0, the amide protons start slowly exchanging with deuterium (white dots)
and become invisible in the "H-detected NMR spectra. For each observable proton, the exchange rates are measured. A similar experiment is done in the pres-
ence of a mAb at a ratio at which the allergen is present as a mixture of free and bound states (1:1). Only the amide signals of the free allergen are detectable,
but because there is an equilibrium between free and bound allergen, a mixture of H/D exchange rates is observed containing contributions of the free and
bound state. Regions that are bound to the mAb are expected to be protected from H/D exchange and therefore show a lower exchange rate compared with
the free allergen.
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Figure 4. HDXMEM data of Art v 3 in the presence and absence of mAbs. Left, '>’N-"H HSQC of Art v 3 in the absence of a mAb 10 min after dissolving the
sample in D,0. The signals of the two amino acids Lys-33 and Leu-52 are highlighted. Right, the intensities of the two example residues (Lys-33 and Leu-52)
are plotted over time in the absence and presence of mAb |, Il, and Il measured at 298 K with an exponential fit and the extracted exchange times as fitting
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36 to 54% (Fig. S15). Among the mAbs, the broadest reactivity, to a very low sequence identity of 36%. The individual reactivity
recognizing six of eight proteins, was observed for mAb I. In con-  pattern toward the panel of LTPs corroborates the fact that all
trast, mAb II and mAb III were more specific for Art v 3, with  mAbs recognize distinct surface-located epitopes.

additional reactivity solely for Fra e 3 and Mal d 3/Api g 2, respec- For epitope refinement, we additionally evaluated the anti-
tively (Fig. 6A4). Amb a 6 was not detected by any of the mAbs due  body recognition pattern together with the individual amino
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the surface presentations on the right are based on the crystal structure (PDB entry 6FRR, chain A). Changes in the H/D exchange rates are color-coded in
hot pink (>60%), moderate changes in pink (>40%), and changes below the lowest threshold in pale cyan. Residues without a detectable NH group are

depicted in gray. Error bars, S.D.

acid sequences of homologous LTPs. This considers potential
residues involved in epitope formation that were not detectable
in NMR due to very fast H/D exchange rates. For mAb I, the
main interaction as determined by NMR is observed in the cen-
tral part of Art v 3 (as displayed in Fig. 5), in which Lys-33 and
Asn-36 are flanked by strong perturbations of Gly-34 and Ala-
39. Considering the antibody recognition pattern from negative
(—) to strongly positive (+++), residues, Val-24 and Asn-77
are mostly conserved in sequences with positive reactivity and
might thus contribute to epitope formation (Fig. 6B). The sur-
face region for the interaction with mAb II clustered around
the C terminus, including Arg-45, GIn-46, Tyr-80, and Lys-92.
Residues in the vicinity, which were not detectable by NMR but
show coherence in strongly recognizing only the two Art v 3
isoallergens, are Pro-43, Asn-89, and Lys-90. The epitope rec-
ognized by mAb III localizes to another part of the molecule
around residues Lys-33, Lys-73, Cys-74, and Val-76. In addi-
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tion, Ser-72 and Asn-77 could be relevant to establish the anti-
body-binding site due to structural proximity and the anti-
body-binding pattern of the LTP homologs. The individual
mAb-binding profiles and amino acid sequences of all investi-
gated LTPs enabled us to propose additional residues involved
in the binding epitope.

Art v 3 epitope variants present considerable differences in
antibody-binding reactivity

To further analyze the identified epitopes, we generated four
Art v 3 variants targeting epitopes of mAb I (V1), mAb II (V2),
and mAb III (V3A and V3B) using a computational approach to
maintain protein stability (Fig. 7A and Fig. S16A). As V3A shared
two exchanged residues with V1, another variant termed V3B
lacking Lys-33 and Asn-77 was generated. Recombinant Art v 3
variants were obtained from E. coli expression. Protein purity,
identity, and formation of disulfide bonds were confirmed by gel
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Figure 6. Recognition pattern of mAbs to Art v 3 and homologous LTPs. A, titers of mAb |, mAb Il, and mAb Ill for Art v 3 and six other LTPs were measured
by ELISA. Binding strengths of mAbs are depicted as follows: titers >10° (++ +), titers between 10° and 10° (++), titers between 10* and 10° (+), and titers
<10 (—). B, sequence alignment of Art v 3 and homologs to refine binding patterns of individual mAbs. Color-coded hotspots observed during the interaction
with mAbs are used in accordance with Fig. 4 (filled boxes, amino acids involved in the epitope; rimmed boxes, amino acids that have been identified by
HDXMEM NMR and are thus influenced by binding but not part of the epitope). Yellow boxes, amino acids invisible by HDXMEM NMR that potentially contrib-
ute to the epitope. Surface-exposed residues involved in mAb binding of Art v 3.0201 are shown in boldface type. Binding strengths of different homologs to
the mAbs are indicated on the right. Residues that correlate with the mAb-binding pattern are highlighted with an arrow.

electrophoresis and MS, respectively (Fig. S16, B and C). In ELISA
experiments, recognition of V1 was selectively disrupted when
using mAb I (Fig. 7B). Unexpectedly, V2 maintained its anti-
body reactivity with mAb II (Fig. 7C). Recognition by mAb
III was completely abrogated for V3A and partially for V3B
(Fig. 7D). Interestingly, amino acid exchanges targeting the
mADb III epitope also affected antibody binding by the other
antibodies.

Testing all epitope variants with serum from allergic
patients, IgE reactivity to V2, V3A, and V3B was signifi-
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cantly reduced compared with Artv 3 (Fig. 7E), with median
declines ranging from 88.2 to 83.4% when calculated for
each patient individually. In addition, V1 also showed
changes in IgE reactivity (i.e. 47.7% lower reactivity), which
was, however, not statistically significant. It is noteworthy
that patients presented highly individual IgE reactivity pro-
files toward the epitope variants (Fig. S17). In summary, all
variants showed reduced IgE-binding capacities, and thus
relevant IgE-binding epitopes were successfully targeted by
the residue exchanges.

SASBMB
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Figure 7. Artv 3 epitope variants and recognition by mAbs and patients’ serum IgE. A, surface representation of residues exchanged for epitope variants
V1, V2, V3A, and V3B based on the crystal structure (PDB entry 6FRR, chain A). Shown is ELISA antibody reactivity to Art v 3 and epitope variants using mAb |
(B), mAb Il (C), and mAb Il (D). Bars, mean of four technical replicates; whiskers, S.D. E, IgE reactivity of allergic patients’ sera (n = 15) to Art v 3 and epitope var-
iants. Black lines, medians. **** p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05.

Discussion

Identification of antibody-binding epitopes and determina-
tion of IgE cross-reactivity is crucial to better understand the
mechanisms of allergic responses. However, so far, we lack
straightforward methods for determination of structural epi-
topes using intact antibodies. To overcome this limitation, we
developed HDXMEM, a novel NMR method, and elucidated
three clinically relevant IgE-binding epitopes of the mugwort
pollen allergen Artv 3.

Recombinant Art v 3 was used to immunize mice for subse-
quent generation of mAbs. Using this approach, we obtained
large amounts of three high-affinity IgG1 antibodies with dif-
ferent binding mechanisms at the molecular level. Reflecting
the fact that human IgE antibodies from allergic patients solely
recognize structural epitopes of Art v 3 (25), we selected mAbs
with strong binding to the native protein but lacking reactivity
to the reduced and alkylated protein. Such in vitro—generated
mADbs have several advantages, as they are highly specific for a
single epitope (with affinities in the nanomolar range) and can
be produced in large quantities as needed for interaction stud-
ies. In addition, they can be used to overcome the low bioavaila-
bility of human antibodies, especially IgE (15, 40—42). A key fea-
ture of our surrogate mAbs for mapping clinically relevant
allergenic epitopes is their overlap with human IgE-binding
regions from allergic patients. The majority of investigated
patients showed a high overlap with mean inhibitions ranging
from 70 to 90%. Such a high overlap is remarkable, as human
IgE is polyclonal, and patient-tailored reactivity profiles are fre-
quently observed within the LTP syndrome (31). This supports
the assumption that antibodies recognize similar regions on

SASBMB

allergens irrespective of antibody subtypes or even organisms
and emphasizes the use of surrogate antibodies for subsequent
analyses (22).

Concerning epitope mapping of allergen-antibody interac-
tions, only some allergen-antibody co-crystals have been elu-
cidated so far, whereas the majority of binding regions were
indirectly determined by in vitro mutagenesis (22, 43, 44).
Besides, H/D exchange monitored by MS can be explored for
determination of interaction sites at the peptide level. How-
ever, analysis requires sufficient accessible proteolytic pro-
tein cleavage sites to narrow down resolution and ensure suit-
able display of discontinuous epitopes on the surface (45, 46).
With regard to epitope mapping of Art v 3, neither co-crystal-
lization experiments with Fab fragments nor H/D exchange
coupled with MS were successful in our previously conducted
studies.

We therefore exploited NMR spectroscopy for epitope map-
ping studies. First, we confirmed the typical a-helical LTP fold
as previously revealed by X-ray crystallography (PDB entry
6FRR) (25) using secondary structure chemical shift analysis of
Art v 3. So far, NMR spectroscopy has been used for mapping
of structural epitopes of two house dust mite allergens using ei-
ther Fab fragments (14) or intact antibodies in combination
with a detergent to weaken the interactions (15). However,
when studying tight interactions between allergens and an
intact mAb, traditional chemical shift deviation approaches
typically fail. Moreover, cross-saturation transfer experiments
are usually unsuccessful due to slow kg values. As such, the tra-
ditional NMR approaches were not applicable for analyzing the
high-affinity binding to Artv 3.
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Therefore, we developed a combination of H/D exchange
and the indirect observation of the invisible bound form for epi-
tope mapping. In contrast to previous H/D exchange studies,
which relied on a very demanding protocol involving quench-
ing the H/D exchange, separating the antigen from the mAb
and detecting the amount of NH in spectra of the separated
antigen for each time point (21), our approach requires only
one sample per mAb in addition to the measurement of the free
antigen. The novel HDXMEM approach exploits the exchange
between free and bound antigen in samples in which 50% of
free and 50% of bound antigen is present. Although only the
free form is detected, the signals show a memory effect reflect-
ing to a certain degree the H/D exchange in the otherwise invis-
ible bound form. Even though we measure a mixture of the H/
D exchange in the bound form and the H/D exchange in the
free form, this is sufficient to detect changes in the effective
exchange rates when compared with antigen in the absence of
mAb. Because HDXMEM critically depends on the observation
of the amide protons and thus exchange times longer than the
dead time of the experiment, the H/D exchange was slowed
down by measuring at low temperature. At 278 K, the lowest
limit for measurements in D,O, we could measure H/D
exchange rates for 33-36% of the residues, representing an
equivalent or enhanced coverage compared with other H/D
exchange—based epitope mapping studies measured with the
traditional tedious approach (20, 21, 41). Although the cover-
age is incomplete and sometimes an increase in protection
occurs in regions remote from the interaction site (20, 47), the
binding region can typically be still localized. We thus conclude
that HDXMEM is a suitable method for epitope mapping of
antigens interacting tightly with intact antibodies.

Using HDXMEM and mAb-binding pattern, three IgE epi-
topes of Art v 3 involving Val-24, Lys-33, Gly-34, Asn-36, Ala-
39, and Asn-77 (mADb I); Pro-43, Arg-45, Gln-46, Tyr-80, Asn-
89, Lys-90, and Lys-92 (mAb II); and Lys-33, Ser-72, Lys-73,
Cys-74, Val-76, and Asn-77 (mAb III) were identified. These
IgE-binding regions represent the first structural epitopes of a
pollen LTP with relevance in the LTP syndrome. Analogous to
other structural epitopes, residues involved in binding are not
continuous in the sequence but only assemble in the three-
dimensional structure (37). Previous studies revealed charged
residues, in particular lysines, are crucial for binding (3, 14, 48,
49). In accordance with these findings, we determined Lys-33,
Arg-45, Lys-73, Lys-90, and Lys-92 to be involved in epitope
formation of Art v 3. As indicated by different binding mecha-
nisms and patterns, the investigated mAbs recognize three dis-
tinct regions on the protein surface. The epitope of mAb I is
central (according to the illustration in Fig. 5) and mostly
involves residues of the a2-helix. The other epitopes localize to
the outer edges thereof, with the mAb II comprising of residues
in @3 as well as the C terminus and the mAb III epitope pre-
dominately localizing at the end of a4.

To corroborate the identified epitopes, we tested antibody
binding to four Art v 3 epitope variants, each presenting 3 or 4
amino acid exchanges. Variants were computationally designed
to change surface properties of each mAb epitope while main-
taining the protein stability. Using mAb I and mAb III, the
expected reduction in antibody binding toward the respective
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variants was observed. Interestingly, V3A did not interact with
any of the mAbs, suggesting that residue exchanges also influ-
enced other binding regions due to epitope proximity and/or
local structural changes. Although V2 did not lead to changes
in mADb recognition, the majority of patients showed a strongly
reduced or completely lacking IgE reactivity to this variant, sug-
gesting the exchange of residues highly relevant for human IgE
antibody binding. Despite the fact that all variants showed a
reduced IgE-binding capacity, the reactivity profile was highly
distinct for each patient. Similarly, the binding pattern of mAbs
toward the investigated LTP homologs ranging from broad
cross-reactivity (mAb I) to higher specificity (mAb II and mAb
III) was noted. This observation illustrates the complex and
patient-specific IgE (cross-)reactivity as observed in the LTP
syndrome (30—34, 50).

So far, several linear and some conformational IgE-binding epi-
topes of peach and wheat LTP had been identified (6, 7, 35). Those
conformational epitopes were, however, determined by mimotope
mapping followed by three-dimensional modeling, which is not
based on direct antibody-allergen binding experiments as in our
setup. Residues within 31-43 and 71-80 were suggested as rele-
vant epitopes for peach and wheat LTP (6, 35), which are in ac-
cordance with our mAb I and mAD III epitopes. The epitope rec-
ognized by mAb I seems to be widely conserved in other
allergenic LTPs. We therefore propose this region to be part of an
IgE cross-reactive epitope involved in the LTP syndrome.

Even though the mAb III epitope co-localizes with a previ-
ously determined IgE-binding region of LTPs (6, 35), our anti-
body seems to have a high specificity that prevented cross-reac-
tivity with peach LTP in this case. On the other hand, residue
exchanges of V3A led to a dramatic decrease in antibody recog-
nition by all mAbs as well as IgE of most patients. We therefore
confirm that this region also constitutes an important anti-
body-binding epitope of Art v 3. Considering all data, a certain
overlap between the mAb I and mAb III epitope seems plausi-
ble. This is also noticeable in the individual patients’ IgE reac-
tivity profiles, where mostly V1, V3A, and V3B follow a congru-
ency in antibody recognition, but there were also several
exceptions to this pattern. Notably, the epitope revealed by mAb
IT involving the C terminus of the protein is a novel epitope
within the LTP family. IgE reactivity to V2 was highly reduced or
completely abrogated in the majority of patients’ sera tested. Both
the mAb-binding pattern and the testing of variants suggest that
this epitope is highly distinct in localization.

So far, the generation of low IgE-binding LTP variants for
allergen immunotherapy proved to be challenging, as molecules
either lost their a-helical structure and thus stability or showed
only moderate reduction in IgE reactivity (51, 52). Based on the
herein identified antibody binding residues, design of a therapeu-
tic variant lacking all relevant IgE-binding epitopes while main-
taining immunogenicity seems reasonable (53).

In conclusion, we herein describe HDXMEM as an innovative
approach to map clinically relevant epitopes on Art v 3 using
intact antibodies. This method is broadly applicable to all sorts of
tight interactions, in particular with large binding partners like
mAbs, and could be widely used for biopharmaceutical characteri-
zation and epitope mapping. HDXMEM for the first time enables
determination of conformational IgE-binding regions on a pollen
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LTP. The obtained results have a direct implication on the clinical
interpretation of IgE cross-reactivity in the LTP syndrome and de-
velopment of novel therapeutics.

Experimental procedures

Details about the materials and methods are provided in the
supporting information.

Recombinant production of allergens

Recombinant Art v 3.0201, was produced as described previ-
ously (25). For protein isotope labeling, bacteria were grown in
M9 minimal medium with *N or "N and '*C as sole nitrogen
and carbon source (54). Proteins were purified as described
previously and analyzed by reducing gel electrophoresis (25).
Another isoform (i.e. Art v 3.0301) as well as Api g 2, Cor a 8,
Pru p 3, Fra a 3, Mal d 3, and Amb a 6 were obtained as
recombinant proteins as published and described in the
supporting information (33, 55-60). Art v 3 epitope variants
V1,V2,V3A, and V3B (Fig. 7 and Fig. S16) were obtained using
the stability predictor MAESTRO (61) to the crystal structure
of Art v 3 (PDB entry 6FRR). Recombinant production and pu-
rification were performed analogous to Artv 3.

MS

MS analyses of Art v 3, isotopically labeled proteins, and epi-
tope variants were conducted on the intact protein level using
the Thermo Scientific™ Q Exactive™ and Thermo Scienti-
fic™ Q Exactive™ Plus Hybrid Quadrupole-Orbitrap™ mass
spectrometers (Thermo Fisher Scientific). The extent of iso-
tope labeling was calculated manually based on the shift of iso-
tope distribution of the most intense charge state.

Generation and purification of monoclonal anti-Art v 3
antibodies

For immunization, three female BALB/c mice (Charles River
Laboratories) were immunized subcutaneously with 10 pg of
recombinant Art v 3 adsorbed to Alu-gel S in sterile PBS. After
six immunizations, B cells from the spleens were collected and
used for hybridoma production (62). Secreted antibodies in the
supernatant were tested for IgG (IgGl, IgG2a, I1gG2b, and
IgG3) and IgE reactivity in an ELISA. For purification, secreted
antibodies were obtained from B-cell hybridoma cultures and
purified using protein G affinity chromatography. Animal
experiments were approved by the Austrian Ministry of Science
(permission no. GZ 66.012/0047-11/3b/2017).

Affinity determination

ITC was performed on a VP-ITC microcalorimeter (Micro-
Cal), loading the sample cell with respective mAbs and the
microsyringe with Art v 3. Raw data were analyzed using the
MicroCal ITC module of Origin 7.0, applying a 1:2 binding
model. For SAW measurements, Art v 3 was immobilized on
the surface of a SAW CM-Dextran three-dimensional sensor
chip and incubated with serial dilutions of mAbs. SAW phase
changes were recorded, and Trace Drawer 1.7 software was
used to calculate the affinities.
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mADb ELISA

mAb reactivities to native and reduced/alkylated Art v 3 as
well as antibody titers to Art v 3, homologous LTPs, and epi-
tope variants were determined by ELISA. Briefly, 200 ng of pro-
tein/well was coated overnight to ELISA plates. Plates were
incubated with anti-Art v 3—specific monoclonal antibodies (in
serial dilution for titer calculation), and an alkaline phospha-
tase—labeled rabbit anti-mouse IgG/IgM antibody was used for
subsequent colorimetric detection.

Patients’ IgE ELISA

Twenty-one patients with allergic symptoms to mugwort
pollen and positive in vitro reactivity to Art v 3 were included
(Table S1). The study was approved by the Institutional Review
Board (approval no. 106-CE-2005). Sera of those patients were
used to determine IgE reactivity to Art v 3, homologous LTPs,
and epitope variants. Briefly, 200 ng of protein/well was coated
overnight to ELISA plates. Plates were incubated with individ-
ual patients’ sera, and an alkaline phosphatase—labeled mouse
anti-human IgE antibody was used for subsequent colorimetric
detection. For cross-inhibition studies, coated proteins were
first incubated with respective mAbs. After washing, individual
patients’ sera were applied and detected as described above.
Decline of IgE reactivity compared with measurements without
mAbs was calculated as percentage of inhibition.

NMR spectroscopy measurements

All spectra were recorded on a 600-MHz Bruker Avance III
HD spectrometer equipped with a QXI quadruple-resonance
probe (*H/*C/*N/*3C) at 278 or 298 K. Standard three-dimen-
sional triple-resonance experiment spectra were recorded for se-
quential assignment.

Data availability

Chemical shift assignments were deposited in the BioMagRes
data bank under accession number 28092. All remaining data are
contained within the article and the supporting information.
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